Introduction to Probability

In this activity, we will learn how to calculate the probability of an event from occurring. Let us first define some basic terms in Probability.

Probability experiments – chance process that leads to well-defined results called outcomes.

For example, flipping a coin or rolling a die are called probability experiments.

Outcome – result of a single trial of a probability experiment.

Sample space – the set of all possible outcomes of a probability experiment.

Example:

List the **sample space** of the following probability experiment.

1. Tossing one coin

Solution: Head, Tail *(two possible outcomes)*

2. Roll a die

Solution: 1, 2, 3, 4, 5, 6 *(6 possible outcomes)*

Exercises:

List the sample space of the following probability experiment.

1. Answering a true/false question

2. Tossing two coins

Using a Table to list Sample Space

Sometimes the number of possible outcomes in the sample space is long. We can use a table to organize the sample space using a table.

Exercise:

3.

a. List the sample space of the sum of rolling two dice by completing the table below.

		Die 1					
		1	2	3	4	5	6
Die 2	1	2					
	2			5			
	3					8	
	4						
	5		7		9		
	6	7					12

b. How many total possible outcomes?

c. How many outcomes give a sum of 7 or less? ______

d. How many outcomes give a sum of 5 or more? ______

Using a Tree Diagram to list Sample Space

Another technique we can use to list the sample space is to create a tree diagram.

Exercise:

Let **B** = Boy and **G** = Girl

4.

a. List the sample space for the gender of a three children family by filling in the boxes in tree diagram.

4 Third Child Outcomes Second Child В **First Child** BBG G В В В G G **b.** How many total possible outcomes? c. How many outcomes have exactly 2 girls? _____

Calculating Probability

An **event** consists of a set of outcomes of a probability experiment. The formula for calculating the probability of an event is given by:

 $P(event) = \frac{number of outcomes in the event}{total number of outcomes in sample space}$

Example:

Find the probability of getting a sum of 5 or less when rolling two dice. (Use the dice table from page 2)

Solution: The event is *getting a sum of 5 or less*.

total number of outcomes in the sample space is **36** number of outcomes of rolling a sum of 5 or less is **10**

 $P(rolling \ a \ sum \ of \ 5 \ or \ less) = \frac{number \ of \ outcomes \ of \ rolling \ a \ sum \ 5 \ or \ less}{total \ number \ of \ outcomes \ in \ sample \ space} = \frac{10}{36} = \frac{5}{18} \approx 0.278$

Exercises:

Find the probability of the given event. Write final answer in reduced fraction and decimal (round to three decimal places).

5. Find the probability of getting a sum of exactly 10 when rolling two dice.

6. Find the probability of getting a sum of 8 or more when rolling two dice.

7. Find the probability that all 3 children are of the same gender? (Refer to the tree diagram in page 3)

8. Find the probability of exactly two boys in a 3 children family?